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A P P E A R A N C E  OF A " C O L D "  L A Y E R  U P O N  E X P L O S I V E  

C O M P A C T I N G  OF P O W D E R S  

A. E. Buzyurkin  and S. P. Kiselev UDC 539.374 

Explosive compacting of powders is numerically simulated in the two-dimensional formulation. 
Different flow regimes depending on the detonation velocity are considered. Based on the cal- 
culations, the nature of the appearance of a "cold" layer upon explosive compacting of powders 
is revealed. 

Upon compacting of powder materials under conditions of two-dimensional explosive loading, zones of 
structural inhomogeneities located near the interface between the powder and deformed target can appear. In 
particular, low-temperature "cold" zones were observed in plane or cylindrical powder compacts containing a 
monolithic rod (centerbody), which is a flat plate in the two-dimensional case. In these zones, the compacting 
process was not accompanied by a significant increase in temperature [1]. The "cold" layer is understood as 
a layer in which the particles are not "welded" and experience a significantly lower local deformation than 
the particles in the outer layer. The nature of formation of these zones has not been clarified yet. According 
to Kostyukov [2], the "cold" layer appears if the following inequality is satisfied: 

D < D . ,  

Here D is the velocity of propagation of a detonation wave and D. ~ Co is the velocity of propagation of a 
shock wave in a plate, which is close to the volume speed of sound Co under given loads. The shock-wave 
pattern arising in this case was qualitatively analyzed by Kiselev and Fomin [3] and is shown in Fig. 1. 
A hillock BC arises on the plate surface MLKN ahead of the shock-wave front AOC. This hillock generated a 
weak shock wave OB. In the inner layer LGFK, the powder LHIK is compressed in shock waves OB, OC, and 
EC. It is assumed that the powder is compressed to dense packing in the weak shock wave OB; therefore, the 
irreversible losses of thermal energy related to plastic collapsing of the pores (particle-shape variation) are 
small, and the particles are not "welded." It is the continuous material that is compressed in the shock wave 
OC; hence, the thermal energy changes weakly, and the internal energy is changed due to increasing energy 
of cold compression. In the outer layer GHIF, significant thermal energy is released upon plastic collapsing 
of the pores in a strong shock wave emanating from the explosive (~ is the region occupied by explosion 
products and ASRI is the nonreacted explosive), which leads to "welding" of the particles with each other 
(Fig. 1). 

It should be noted that the previous two-dimensional numerical calculations [1] did not register the 
formation of a hillock on the centerbody surface ahead of the shock wave in the powder for D < Co. The 
reason is not clear because Kusubov et al. [1] did not give the equation of state of the powder used in the 
calculations. The dynamic experiments of Kostyukov [4] revealed only an indirect effect of the hillock on 
density variation, and the hillock itself was obtained only at one point corresponding to conditions D = Co. 
All this makes actual numerical simulation of this problem difficult. 
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Equations that  describe the behavior of a porous elastoplastic medium are based on the laws of con- 
servation of mass, momentum, and energy and have the form [5, 6] 

Op 
0--[ + V i p v i  = O, p = Psm2, llZl + m2 = 1, 

dvi d 0 
p ~ = ~j(Vij, d-'~, = 0-"~ § viVi,  

0 Vi = 
O X  i ' 

dE  1 
fl - ~  -- (Tij~ij, ~ij -~ ~ ( ~ i v j  4- ~ jvi) ,  (Yij = -pSi j  4- Sij, 

4 
mi  = :ra3n, i , j  = 1, 2, 3, 5 

(i) 

where a and n are the pore radius and concentration, ml  is the volume concentration of the pores (porosity), 
m2 is the volume concentration of the material, Ps is the density of the material, p is the mean density, aij 
and ~ij a r e  the averaged tensors of stress and strain rate, vi is the i th component of velocity, E is the specific 
internal energy, p is the pressure, and Sij is the deviator of the stress tensor. 

Prior to compacting, the powder is assumed to be compressed to the state of dense packing; therefore, 
upon explosive loading, it behaves as a porous body with initial porosity m ~ = 0,4. 

To close system (1), we used the equation of s tate  of a porous body proposed in [6] 

i~ = i)~ + i~t, i~x = - t , - ' i~k ,  i~t = ( r p E t ) ' ,  (2) 

= e r = r e p , E Ez + Et,  Ez  = ((1/2)Kl(r 2 + # le i j e i j ) /p ,  eij eij + 

where K1 and #1 are the averaged elastic moduli of volume compression and shear of the porous material. 
In the region of elastic deformations (3 /2)S i jS i j  < y2 ,  the stress deviator is found from the Hooke's 

law 
v 
S l y  = 2#eij, e l y  = ~ i j  - -  ( l / 3 ) ~ k k ~ i j ,  (3) 

and in the plastic region, from the Prandtl-Reiss  equations 
v 

eij = S i j / (2# )  4- ~kSij, (3/2)SUSij  _-_ y 2  (4) 

v 
S i j  "= S i j  - W i k S k j  - -  r  ~ i j  = 0 . 5 ( V i , j  - -  V j , i ) .  

In (1)-(4), pz and Pt are the "cold" and thermal pressures, Ex and Et are the "cold" and thermal energies, K 
is the modulus of volume compression, # is the shear modulus, Y is the yield strength, and F is the Griineisen 
constant; each of the subscripts i, j ,  and k runs through the values of 1, 2, and 3; summation is performed 

177 



over repeated subscripts; the dot above a symbol corresponds to its derivative in time; the subscript after the 
comma refers to the derivative relative to the corresponding coordinate; elastic and plastic deformations are 
denoted by the subscripts e and p, respectively. The yield surface has the form 

Y 2 m 2 -  (9/4)p2ml,  IPl <- Ipol, 

3 NjS i j  = y2,  y 2  = Ys2m2 m2' IV0[ < [Pl ~< iV*I, 
2 

0, ]p] > [p,[, (5) 

m 2 _  l + m  2 2 r e i c h  3p 
rn------2- m2 2Y~' mr  + mp = 1, 

where [p.] = ( 2 /3 )Ys ln (1 /m l ) ;  [P0[ = (2/3)Y~(1- rnl); Ys is the yield strength of the continuous material, 
and me and mp are the fractions of the cell volume, which are in the elastic and plastic states. It follows 
from formulas (5) that ,  as the pressure ]p[ increases, the yield strength decreases and vanishes at ]p] = ]p.]. 

In the case [Pf < ]P0], elastic loading (unloading) occurs, and the following formulas are valid: 

K ~- K 1 ,  ]A ~- ~1,  K1 = Ksm2 1 + 2 1 - 2 u / '  #1 = 1 + 0 . 5 ' m l  ' ~-k  ---~ Ps '  (6) 

Here Ks and #s are the elasticity moduli of the continuous material and v is the Poisson's ratio. In the case 
[P0] < IP] < IP*I, a plastic zone is formed around the pore, the strains become elastoplastic, and the following 
formulas are valid: 

K = K2, # = #2, K2 = Ksm2 1 + 3(1 - -2u)  mpm2 , 

(7) 
+ _ _ '  

Equations (7) are satisfied in the case of the loading plb > 0. Upon unloading (p/i < 0), the material is 
described by Eqs. (6) to a certain state; the subsequent unloading from this state is elastic. If ]p] > IP*[, the 
pores lose their stability, and their collapse is observed. In this case, the equations acquire the form 

Px - ~e �9 = --Kt~kk, Xek k = rh2/m2 - lS/p. 

The variation of the quantity a(t,  so ,p)  = 1/m2 is described by the equation [6, 7] 

52 p .o 
p -  3 ( a O - - ~ ) 2 / a  

4s5~ 2Y~ a 
3 a ( a - - 1 )  + T  l n - - a _ l ,  (8) 

where q is the material viscosity. 
In considering the pore-collapse dynamics behind the shock-wave front, we can distinguish two charac- 

teristic cases: inertial and viscous collapse of the pores. The ratio of inertial to viscous forces is determined 
by the Reynolds number analog Re = aox/~sp,/~?. Inertial forces prevail for Re >> 1, and viscous forces are 
dominant, for Re << 1. In the case Re << 1, Eq. (8) takes the form 

2 a 4 d 
p = ~ Y~ In - -  ~? . (9) 

c~- I 3 a ( a - 1 )  

An estimate of the initial pore radius ao for which the inertial terms can be ignored yields the value 
of about 10 #m. Thus, for a0 ~< 10 pm, the variation of porosity in time is described by Eq. (9), and in the 
case ao > 10 pm, it is necessary to solve the full equation (8). 

Following Dunin and Surkov [7], we write the specific thermal energy E~ in the form 

2Y, r ao ao - 1 ] Et=EI+E2+Ea, E l = - -  aoln- - - (ao-1)  l n - - + ( a o - a ) l n  a 
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47 f &2 dt Ct2 ~ 2 [ 1 
Ea 

a (-~ --'l.) ' 6(o~0 ---- T) 2/3 l (~ -- --i)1/30~1~73 ] ' 
where E1 and E2 are the mean values of dissipated energy in plastic and viscous flows and E3 is the mean 
kinetic energy of motion arising upon collapsing of the pores. 

The centerbody is an elastoplastic material, which is described by Eqs. (1) with ral = 0. As closing 
relations, we use Eqs. (2)-(4) in which we ignore the thermal energy Et = 0 and, hence, the thermal pressure 

Pt = 0 .  
In this paper, the action of the explosion products  on the powder was simulated by external pressure 

at the upper boundary of the powder. The  value of this pressure was found from the analytical solution of 
the problem of motion of the explosion products  behind the front of a one-dimensional plane detonation wave 
with an isentrope in the form p = Ap ~. In this case, all the parameters behind the shock-wave front depend 
only on the coordinate x and time t. The  dependence of the velocity of sound c(x, t) has the form [8] 

c = x / ( 2 t ) + D / 4  for D / 2 < x / t < D ,  
c= D/2 for x/t  < D/2. 

Correspondingly, the pressure applied to the upper boundary of the powder at 7 = 3 was found from the 
formula p = pH(C/CH) 3 (PH and CH are the pressure and velocity of sound at the Chapman-Jouguet  point). 

In the solution, we used the "cross" finite-difference scheme described in detail by Wilkins [9]. Non- 
physical oscillations behind the shock-wave front were suppressed by introductidn of artificial viscosity into 

the numerical scheme. 
The contact boundaries are calculated using a symmetric algorithm developed by Gulidov and Sha- 

balin [10]. 
The calculations were conducted for a plane case (Fig. 1). The plate material was aluminum, and 

the powder material was copper with initial porosity m ~ = 0.38. The detonation velocity varied within 
0.2-0.8 cm/#sec.  The volume velocity of sound in the aluminum plate was Co = 0.535 cm/#sec.  The 
following parameters were used in the calculations: Ps = 2.785 g /cm 3, Y~ = 0.41 GPa, Ks = 74.4 GPa, and 
#s = 24.8 GP a  for aluminum and ps = 8.9 g /cm 3, Y~ = 0.2 GPa, Ks = 139 GPa, and/~s = 46 GPa  for copper. 

Figures 2 and 3 show calculations results for the detonation velocity D = 0.36 cm/#sec (D < C0) at 
the time t = 25 #sec. Figure 2 shows the difference grid in the plate (region I) and in the powder (region II). 
For convenience, the ?/scale is increased by a factor of seven. It is seen in Fig. 2 that  a deformation hillock 
is formed on the surface of the aluminum plate for D < Co; the influence of this hillock extends to the two 

nearest layers of the difference grid in the powder. 
Figure 3 shows isolines of pressure p, porosity ml ,  and specific thermal energy Et. The horizontal 

solid line (for p and Et) corresponds to the contact boundary  powder-plate at the time t = 0. The isobars 
in Fig. 3 demonstrate  the flow pat tern formed in the computational  domain. An incident shock wave in the 
powder and a weak shock wave emanating from the aluminum plate are clearly visible, and the propagation 
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of disturbances over the plate is observed. The distribution of porosity shows that a complete collapse of the 
pores occurs on the greater part of the sample. On the left, the powder was not compacted to the density 
of a continuous material because of the influence of an unloading wave passing from the butt-end surface. 
Far from the plate, the powder is compacted in an incident shock wave passing from the explosive. Near the 
interface between the powder and the plate, the pores collapse in a weak shock wave generated by the hillock, 
and this occurs earlier than the shock wave from the detonation products arrives. It is seen in Fig. 3 for E~ 
that this leads to a significant decrease in the thermal energy E~ in the powder near the plate. The thickness 
of the region of low thermal energy in the powder obtained in calculations varies within 0.18-0.27 cm, which 
extends to 2 or 3 cells of the computational grid. These values are in good agreement with experimental 
data [11]. The value of Et decreases from 34 J /g  to zero over this thickness. We note that the collapse of the 
pores and powder compacting near the plate prior to the arrival of the shock wave induced by the detonation 
products was observed in the experiments of Kostyukov [4]. 

Figures 4 and 5 show calculation results for the detonation velocity D = 0.6 cm/#sec, which is greater 
than the volume velocity of sound in the plate Co = 0.535 cm/psec. The difference grid (Fig. 4) and the 
isolines of distributions of pressure p, porosity ml,  and specific thermal energy Et (Fig. 5) are given for the 

time t - 25 psec. 
In this case, a deformation hillock is not observed on the plate surface (Fig. 4) (for convenience, the y 

scale is increased by a factor of ten). The reason is that the slope of the oblique shock wave in the powder 
is rather small. Thus, despite the fact that the compression wave in the plate goes ahead of the shock wave 
in the powder, the hillock on the interface between the powder and the plate does not have enough time to 
form before the arrival of the oblique shock wave. The isobars in Fig. 5 show that the powder compacting 
is uniform over the entire thickness in the incident shock wave emanating from the explosive. In this flow 
regime, the thermal energy Et near the centerbody practically does not decrease [the dramatic decrease in 
Et visible in Fig. 5 occurs over the thickness of the order of one cell of the computational grid; it is related 
to the use of linear interpolation utilized in constructing isolines from zero (in the plate) to the maximum]. 

The size of the deformation hillock depends on the difference in velocities Co - D. As the detonation 
velocity decreases, the hillock increases too, but this occurs up to a certain value of the detonation velocity. 
Thus, for D = 0.2 cm/#sec, the size of the hillock is smaller than for D ---- 0.36 cm/#sec. This dependence 
is explained by a smaller load on the powder during its compacting with lower velocities; hence, the action 

exerted by the plate decreases. 
Thus, by means of numerical simulation of explosive compacting of powders in the two-dimensional 

formulation, it is shown that, the condition D < Co being satisfied, a deformation hillock is formed on the 

plate surface, which leads to the appearance of a "cold" layer. 
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